A Study Examining the Reliability of Identification & Validity of Ventilatory Thresholds in Relation to Human Endurance Performance Miramani M. Lenzini¹, Elizabeth D. Hubbell², Keston G. Lindsay², Addison D. Rhodes¹, James Pearson², Andrew W. Subudhi², & Robert A. Jacobs²

ABSTRACT

Ventilatory thresholds (VTs), which are identified by analyzing various changes in ventilatory gasses during exercise, relate to parameters of health and disease in humans. Thus, the applied and clinical value of VTs is high. However, there are multiple ways by which VTs can be assessed with no general consensus on the best method. This study examined the reliability of identification and validity in relation to endurance performance of the most common VTs across 60 and 43 human participants, respectively. We found that the VT identified by assessing the ventilatory equivalents of oxygen curve is the most reliable and valid VT.

INTRODUCTION & STUDY AIM

Metabolic thresholds (also referred to as fatigue or performance thresholds) represent the intensity of physical activity at which skeletal muscle fiber-type recruitment changes and/or substrate utilization in muscle shifts, influencing time-to-fatigue. Metabolic thresholds can be assessed by collecting samples of ventilatory gasses or blood lactate during exercise and are commonly referred to as a ventilatory threshold (VT) or a lactate threshold, respectively. VTs have been identified as equivalent to or better than lactate thresholds for assessing metabolic thresholds and they do not require the collection of blood for the threshold identification. VTs have also been shown to correlate with endurance performance and all-cause mortality. Thus, VTs relate to both health & disease in humans. However, there are many different methods used to assess VTs across the literature with little understanding of which VTs are better. Accordingly, we aimed to assess the reliability of identifying different VTs and examined their validity in relation to human endurance performance.

METHODS

Sixty study participants underwent an incremental exercise test on a cycle ergometer to volitional fatigue. Study participants characteristics are shown in the results. A collection of ventilatory gasses were obtained during all incremental exercise tests and used to determine different VTs. Endurance performance on a cycle ergometer was also assessed in a subgroup of the participants (n = 143). The VTs assessed included the gas exchange threshold (GET) considered a moderate-intensity VT and respiratory compensation point (RCP) considered a high-intensity VT along with ventilatory equivalents (VEQ) and ventilatory equivalent of oxygen (VE/VO₂) methods, both of which represent low, moderate, and high intensity VTs. All VT assessments were determined by the same 4 researchers with the data necessary for each VT assessment processed in 10-sec and 30-sec rolling averages along with exponential smoothing - totaling 756 VT assessments per reviewer. One reviewer was unblinded while the other 3 were blinded to the study participants and data processing method. Blinded reviews were randomized and provided in a counterbalanced order.

		RESULTS				
Sample Size	Age (yrs)	Height* (cm)	Weight* (kg)	BMI*	VO _{2max} * (ml O ₂ ·kg ⁻¹ · min ⁻¹)	W _{max} * (Watts)
Female (n = 13)	31.6 ± 14.5	164.5 ± 7.3	57.3 ± 7.4	21.1 ± 1.8	43.8 ± 7.0	211.3 ± 40.2
Male (n = 47)	32.6 ± 10.5	180.3 ± 5.1	78.8 ± 13.1	24.2 ± 3.7	49.7 ± 10.0	319.7 ± 71.7
All (n = 60)	32.4 ± 11.3	176.9 ± 8.6	74.1 ± 14.9	23.5 ± 3.6	48.4 ± 9.7	296.2 ± 78.7
	* represents a	a significant diffe	erence between f	emale and male	participants (p < 0.05	5)
			Aim 1			
		95% Co	onfidence Interv	als (Bonferror	ni)	
LOWVEQ10 - LOWVEQES-	F	LOWVE-VO2 ₁₀ - LOWVE-VO2 _{ES} -	GET,	₀ - GET _{ES} -	MIDVE-VO2 ₁₀ - MIDVE-VO2 _{ES} -	⊢ ●-1

Aim 2							
Processing Method	GET	RCP	VEQ	VE/VO ₂			
10 sec rolling averages	N/A	N/A	16.8 ± 8.6% ^a	5.1 ± 5.4% ^b			
30 sec rolling averages	N/A	N/A	14.6 ± 9.5% ^a	2.9 ± 3.2% ^{b,c}			
Exponential Smoothing	N/A	N/A	15.2 ± 10.0% ^a	2.8 ± 2.7% ^c			
Processing Method	GET	RCP	VEQ	VE/VO ₂			
10 sec rolling averages	12.2 ± 7.4% ^a	N/A	10.2 ± 5.6% ^a	2.7 ± 2.2% ^b			
30 sec rolling averages	9.4 ± 5.9% ^a	N/A	9.7 ± 4.8% ^a	1.7 ± 1.4% ^c			
Exponential Smoothing	12.2 ± 6.9% ^a	N/A	9.7 ± 5.2% ^a	1.6 ± 1.4% ^c			
Processing Method	GET	RCP	VEQ	VE/VO ₂			
10 sec rolling averages	N/A	7.0 ± 4.3% ^a	6.2 ± 3.4% ^{a,b}	1.8 ± 2.2% ^d			
30 sec rolling averages	N/A	4.2 ± 3.9% ^c	6.4 ± 3.2% ^{a,b}	1.4 ± 1.6% ^d			
Exponential Smoothing	N/A	4.9 ± 4.8% ^{b,c}	6.9 ± 4.3% ^a	1.0 ± 0.8% ^d			
Coofficia	nt of Variation (CV)	SD/maan 0/) of w	atta at thraahald				

COEfficient of variation (CV; SD/mean, %) of watts at threshold Thresholds with different superscripted letters represent a significant difference (p < 0.05)

INSTITUTIONAL AFFILIATIONS

¹Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, USA; ²Department of Human Physiology & Nutrition, University of Colorado Colorado Springs, Colorado Springs, CO, USA

University of Colorado Colorado Springs

The first aim of the study was to determine if different data processing methods influence VT determination. Data processing methods included 10-sec and 30-sec rolling averages along with exponential smoothing. While different methods of data processing did influence mean VTs identified to some degree for all VTs analyzed, no method of data processing influenced the slope of the relationship between VT and endurance performance. The second aim of the study was to assess the reliability of VT threshold identification across 4 different reviewers. Determination of the VE/VO₂ threshold was shown to be significantly more reliable than all other methods. The third aim of the study was to report the validity of all VT methods in relation to endurance performance of which the determination of VE/VO₂ threshold was, again, identified as the best.

$ \frac{1}{20} $	Aim 3							
• · · · · · · · · · · · · · · · · · · ·			Method	R ²	F; P value			
		-o· _{LOW} VE-VO2 ₃₀ -o· _{LOW} VEQ ₃₀ ·o· _{LOW} VE-VO2 _{ES}	VEQ ₁₀	0.7021	96.6; < 0.0001			
$\frac{1}{20} + \frac{1}{20} $			VEQ ₃₀	0.6839	88.7; < 0.0001			
$ \frac{1}{20} \frac{1}{300} \frac{1}{400} \frac{1}{500} \frac{1}$		· ●· _{LOW} VEQ _{ES} - ● - _{LOW} VE-VO2 ₁₀	VEQ _{ES}	0.6788	86.7; < 0.0001			
$\frac{20}{20} \frac{30}{30} \frac{40}{40} \frac{50}{50}$ $\frac{20}{50} \frac{30}{50} \frac{40}{50} \frac{50}{50}$ $\frac{125}{50} \frac{125}{50} $		- → LOWVEQ ₁₀	VE/VO2 ₁₀	0.7122	101.5; < 0.0001			
$ \frac{1}{260} \frac{1}{200} \frac{1}{100} 1$	200 300 400 500 ce Performance Watts		VE/VO2 ₃₀	0.7539	125.6; < 0.0001			
$Method R^2 F; P value$ $GET_{10} 0.7809 146.1; < 0.0001$ $GET_{30} 0.7566 127.4; < 0.0001$ $GET_{30} 0.7568 136.3; < 0.0001$ $GET_{30} 0.7568 136.3; < 0.0001$ $VEQ_{10} 0.8422 218.8; < 0.0001$ $VEQ_{10} 0.8422 218.8; < 0.0001$ $VEQ_{10} 0.8514 234.3; < 0.0001$ $VE/VO2_{10} 0.8511 234.3; < 0.0001$ $VE/VO2_{10} 0.8511 234.3; < 0.0001$ $VE/VO2_{20} 0.8675 268.4; < 0.0001$ $VE/VO2_{20} 0.8675 268.4; < 0.0001$ $VE/VO2_{20} 0.8580 247.7; < 0.0001$ $VE/VO2_{20} 0.8335 205.3; < 0.0001$ $RCP_{30} 0.8335 205.3; < 0.0001$ $RCP_{30} 0.8608 253.5; < 0.0001$ $VEQ_{30} 0.8608 253.5; < 0.0001$ $VEQ_{30} 0.8608 253.5; < 0.0001$ $VEQ_{30} 0.8608 253.5; < 0.0001$ $VEQ_{20} 0.8616 255.3; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$	200 300 400 500 ce Performance Watts		VE/VO2 _{ES}	0.7100	100.4; < 0.0001			
$ \frac{GET_{10}}{GET_{30}} 0.7809 146.1; < 0.0001 \\ GET_{30} 0.7566 127.4; < 0.0001 \\ GET_{30} 0.7688 136.3; < 0.0001 \\ VEQ_{10} 0.8422 218.8; < 0.0001 \\ VEQ_{10} 0.8422 218.8; < 0.0001 \\ VEQ_{10} 0.8549 241.5; < 0.0001 \\ VEQ_{20} 0.8575 268.4; < 0.0001 \\ VE/VO2_{10} 0.8511 234.3; < 0.0001 \\ VE/VO2_{10} 0.8675 268.4; < 0.0001 \\ VE/VO2_{20} 0.8675 268.4; < 0.0001 \\ VE/VO2_{20} 0.8675 268.4; < 0.0001 \\ VE/VO2_{20} 0.8580 247.7; < 0.0001 \\ VE/VO2_{20} 0.8335 205.3; < 0.0001 \\ VE/VO2_{20} 0.8663 265.7; < 0.0001 \\ RCP_{30} 0.8608 253.5; < 0.0001 \\ VEQ_{20} 0.8616 255.3; < 0.0001 \\ VEVO2_{10} 0.86616 255.3; < 0.0001 \\ VEVO2_{20} 0.8616 255.3; < 0.0001 \\ VEVO2_{20} 0.8619 256.0; < 0.0001 \\ VEQ_{20} 0.8619 256.0; <$			Method	R ²	F; P value			
$ \begin{array}{c} \mathbf{GET}_{30} & 0.7566 & 127.4; < 0.0001 \\ \mathbf{GET}_{50} & 0.7688 & 136.3; < 0.0001 \\ \mathbf{VEQ}_{10} & 0.8422 & 218.8; < 0.0001 \\ \mathbf{VEQ}_{10} & 0.8422 & 218.8; < 0.0001 \\ \mathbf{VEQ}_{10} & 0.8422 & 218.8; < 0.0001 \\ \mathbf{VEQ}_{10} & 0.8549 & 241.5; < 0.0001 \\ \mathbf{VEQ}_{10} & 0.8511 & 234.3; < 0.0001 \\ \mathbf{VE/VO2}_{10} & 0.8511 & 234.3; < 0.0001 \\ \mathbf{VE/VO2}_{10} & 0.8675 & 268.4; < 0.0001 \\ \mathbf{VE/VO2}_{20} & 0.8675 & 268.4; < 0.0001 \\ \mathbf{VE/VO2}_{20} & 0.8580 & 247.7; < 0.0001 \\ \mathbf{VE/VO2}_{20} & 0.8580 & 247.7; < 0.0001 \\ \mathbf{VE/VO2}_{20} & 0.8580 & 247.7; < 0.0001 \\ \mathbf{RCP}_{30} & 0.8335 & 205.3; < 0.0001 \\ \mathbf{RCP}_{30} & 0.8335 & 205.3; < 0.0001 \\ \mathbf{RCP}_{20} & 0.8663 & 265.7; < 0.0001 \\ \mathbf{VEQ}_{20} & 0.8663 & 265.7; < 0.0001 \\ \mathbf{VEQ}_{20} & 0.8608 & 253.5; < 0.0001 \\ \mathbf{VE/VO2}_{10} & 0.8538 & 239.5; < 0.0001 \\ \mathbf{VE/VO2}_{10} & 0.8538 & 239.5; < 0.0001 \\ \mathbf{VE/VO2}_{30} & 0.8616 & 255.3; < 0.0001 \\ \mathbf{VE/VO2}_{20} & 0.8619 & 256.0; < 0.0001 \\ VE/V$			GET ₁₀	0.7809	146.1; < 0.0001			
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		-0: MIDVE-VO220	GET ₃₀	0.7566	127.4; < 0.0001			
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		-0- GET ₃₀	GET _{ES}	0.7688	136.3; < 0.0001			
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$		-0- _{MID} VEQ ₃₀ ·0· _{MID} VE-VO2 _{ES}	VEQ ₁₀	0.8422	218.8; < 0.0001			
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $			VEQ ₃₀	0.8549	241.5; < 0.0001			
$\frac{1}{200} \frac{1}{300} \frac{1}$	200 300 400 500 ce Performance Watts		VEQ _{ES}	0.7953	159.3; < 0.0001			
$VE/VO2_{30} 0.8675 268.4; < 0.0001$ $VE/VO2_{ES} 0.8580 247.7; < 0.0001$ $VE/VO2_{ES} 0.8580 247.7; < 0.0001$ $\frac{Method}{RCP_{10}} 0.8271 196.1; < 0.0001$ $RCP_{30} 0.8335 205.3; < 0.0001$ $RCP_{30} 0.8663 265.7; < 0.0001$ $RCP_{ES} 0.8496 231.5; < 0.0001$ $VEQ_{10} 0.8663 265.7; < 0.0001$ $VEQ_{10} 0.8663 23.5; < 0.0001$ $VEQ_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{10} 0.86616 255.3; < 0.0001$			VE/VO2 ₁₀	0.8511	234.3; < 0.0001			
$VE/VO2_{ES} 0.8580 247.7; < 0.0001$ $Method R^2 F; P value$ $RCP_{10} 0.8271 196.1; < 0.0001$ $RCP_{30} 0.8335 205.3; < 0.0001$ $RCP_{30} 0.8496 231.5; < 0.0001$ $RCP_{ES} 0.8496 231.5; < 0.0001$ $VEQ_{10} 0.8663 265.7; < 0.0001$ $VEQ_{10} 0.8608 253.5; < 0.0001$ $VEQ_{10} 0.8608 253.5; < 0.0001$ $VEQ_{20} 0.8538 239.5; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$	200 300 400 500 ce Performance Watts	GET ₁₀	VE/VO2 ₃₀	0.8675	268.4; < 0.0001			
$ \begin{array}{c} & \text{Method} & \mathbb{R}^2 & \text{F; P value} \\ & \text{RCP}_{10} & 0.8271 & 196.1; < 0.0001 \\ & \text{RCP}_{30} & 0.8335 & 205.3; < 0.0001 \\ & \text{RCP}_{30} & 0.8335 & 205.3; < 0.0001 \\ & \text{RCP}_{10} & 0.8663 & 265.7; < 0.0001 \\ & \text{VEQ}_{10} & 0.8663 & 265.7; < 0.0001 \\ & \text{VEQ}_{10} & 0.8608 & 253.5; < 0.0001 \\ & \text{VEQ}_{30} & 0.8608 & 253.5; < 0.0001 \\ & \text{VEQ}_{10} & 0.8538 & 239.5; < 0.0001 \\ & \text{VE/VO2}_{10} & 0.8538 & 239.5; < 0.0001 \\ & \text{VE/VO2}_{10} & 0.8616 & 255.3; < 0.0001 \\ & \text{VE/VO2}_{10} & 0.8616 & 255.3; < 0.0001 \\ & \text{VE/VO2}_{10} & 0.8619 & 256.0; < 0.0001 \\ \end{array} $			VE/VO2 _{ES}	0.8580	247.7; < 0.0001			
$\begin{array}{c} RCP_{10} & 0.8271 & 196.1; < 0.0001 \\ RCP_{30} & 0.8335 & 205.3; < 0.0001 \\ RCP_{30} & 0.8496 & 231.5; < 0.0001 \\ RCP_{ES} & 0.8496 & 231.5; < 0.0001 \\ VEQ_{10} & 0.8663 & 265.7; < 0.0001 \\ VEQ_{10} & 0.8608 & 253.5; < 0.0001 \\ VEQ_{30} & 0.8608 & 253.5; < 0.0001 \\ VEQ_{20} & 0.8406 & 216.1; < 0.0001 \\ VE/VO2_{10} & 0.8538 & 239.5; < 0.0001 \\ VE/VO2_{10} & 0.8616 & 255.3; < 0.0001 \\ VE/VO2_{10} & 0.8616 & 255.3; < 0.0001 \\ VE/VO2_{10} & 0.8619 & 256.0; < 0.0001 \end{array}$			Method	R ²	F; P value			
$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\$			RCP ₁₀	0.8271	196.1; < 0.0001			
$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $		-0- _{Нібн} VE-VO2 ₃₀	RCP ₃₀	0.8335	205.3; < 0.0001			
$VEQ_{10} 0.8663 265.7; < 0.0001$ $VEQ_{30} 0.8608 253.5; < 0.0001$ $VEQ_{30} 0.8608 253.5; < 0.0001$ $VEQ_{30} 0.8608 216.1; < 0.0001$ $VEQ_{ES} 0.8406 216.1; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{30} 0.8616 255.3; < 0.0001$	a conception	-о- RCP ₃₀	RCP _{ES}	0.8496	231.5; < 0.0001			
$VEQ_{30} 0.8608 253.5; < 0.0001$ $VEQ_{ES} 0.8406 216.1; < 0.0001$ $VE/VO2_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{30} 0.8616 255.3; < 0.0001$ $VE/VO2_{5S} 0.8619 256.0; < 0.0001$	60-00 60 60-00 60 60-00 60 60 60 60 60 60 60 60 60 60 60 60 6	• O• _{HIGH} VE-VO2 _{ES}	VEQ ₁₀	0.8663	265.7; < 0.0001			
$\begin{array}{c} & & \text{HighVE-VO210} \\ & & \text{RCP}_{10} \\ & & \text{HighVEQ}_{10} \end{array} \end{array} \begin{array}{c} & \text{HighVEQ}_{10} \\ & & \text{HighVEQ}_{10} \end{array} \begin{array}{c} & \text{VEQ}_{ES} \\ & & \text{VE}/VO2_{10} \end{array} \begin{array}{c} & 0.8406 \\ & & 216.1; < 0.0001 \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{10} \\ & & \text{VE}/VO2_{10} \end{array} \begin{array}{c} & 0.8538 \\ & & 239.5; < 0.0001 \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{30} \\ & & \text{VE}/VO2_{30} \end{array} \begin{array}{c} & 0.8616 \\ & & 255.3; < 0.0001 \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & 0.8619 \end{array} \begin{array}{c} & 256.0; < 0.0001 \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & & & \end{array} \begin{array}{c} & 0.8619 \\ & & & & & & & \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & & & & \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & & & & \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & & & & \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & & & \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & & & \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ & & & & \\ \end{array} \begin{array}{c} & \text{VE}/VO2_{FS} \\ \end{array}$			VEQ ₃₀	0.8608	253.5; < 0.0001			
$VE/VO2_{10} 0.8538 239.5; < 0.0001$ $VE/VO2_{30} 0.8616 255.3; < 0.0001$ $VE/VO2_{FS} 0.8619 256.0; < 0.0001$	200 300 400 500 ce Performance Watts	$- RCP_{10}$	VEQ _{ES}	0.8406	216.1; < 0.0001			
$\frac{VE/VO2_{30}}{VE/VO2_{FS}} = 0.8619 = 255.3; < 0.0001$			VE/VO2 ₁₀	0.8538	239.5; < 0.0001			
VE/VO2_{FS} 0.8619 256.0; < 0.0001	200 300 400 500 ce Performance Watts	-0- RCP ₁₀	VE/VO2 ₃₀	0.8616	255.3; < 0.0001			
			VE/VO2 _{ES}	0.8619	256.0; < 0.0001			

CONCLUSIONS

University of Colorado

Boulder | Colorado Springs | Denver | Anschutz Medical Campus