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Nomenclature 

𝛾 = specific heat ratio [dimensionless] 

𝐴0 = area of the orifice [m2] 

𝐶𝑐 = coefficient of contraction [dimensionless] 

𝐶𝑑 = coefficient of discharge [adim] 

𝐾𝑓 = flow coefficient [dimensionless] 

𝑀 = mach number [dimensionless] 

𝑚̇ = mass flow rate [kg/s] 

𝑃𝑖 = initial pressure of the tank [Pa] 

𝑃𝑓 = pressure outside the tank [Pa] 

𝜌𝑖 = initial density of the air in the tank [kg/m3] 

𝑇𝑖 = initial temperature of the tank [Kº] 

𝑉 = volume of the tank, constant [m3] 

 

Introduction 

 Let us consider a situation in which there is a closed tank with a volume, 𝑉, full 

of some unspecified fluid. The fluid has some initial conditions such as 𝑇𝑖, 𝜌𝑖, mass, and 

as it is an over pressurized fluid, 𝑃𝑖 > 𝑃𝑓. Suddenly the tank is opened, and the fluid 

starts to go out from the vessel through an orifice of area, 𝐴0. Based on intuition, it can 

be expected that the pressure, the density, and the mass flow rate would decrease, and 

the temperature will also decrease, if it is an adiabatic case, or instead will be constant, 

if it is an isothermal case. Due to the over pressurized condition and based upon the 

literature of fluid mechanics, during the discharge of the vessel, the flow will behave in 

three different modes. At first it will be a choked flow, but as the pressure keeps 

dropping, the flow will become unchoked. In that moment the pressure will still be high 

enough to cause compressible effects on the flow, so it will be in an unchoked 
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This paper explicates a study of a pressurized flow when a closed tank is suddenly 

opened and the flow passes through an orifice until the tank is at equilibrium with the 

surroundings. The research analyzes the evolution of this adiabatic flow over time 
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compressible condition, and finally the third regime will show up when the flow 

becomes unchoked and incompressible.  

 In the paper “Experiments to Study the Gaseous Discharge and Filling of 

Vessels,” J.Craig Dutton and Robert E. Coverdill [1] have demonstrated that in a fast-

draining situation the flow is going to perform adiabatically. Based on their 

experimental results, it has been assumed that there is an adiabatic flow instead of 

isentropic, and consequently adiabatic equations have been used for determining the 

evolution along the three regimes. 

 Another fact is that the proposed problem has been analyzed for different 

studies, but each of them concentrates the chief issue of the study on the evolution of 

one property or the study of just one phase of the flow [2]. Instead, this paper collects 

the evolution of main properties during the three regimes and uses the specific equations 

that describe each of these three conditions. 

 First of all, this paper describes the assumptions taken and defines the 

dimensionless variables that would work within a general case. Then a mathematical 

development for finding the general equation of the flow is performed, which permits 

the finding of the flow equations depending-on time of each case. Finally, once the 

equations are derived, it is possible to plot them using MATLAB and analyze the 

results. 

Assumptions 

 An effort has been made to keep the study general, but some assumptions have 

been taken in order to simplify the mathematical development: 

1. Quasi-steady flow 

2. One-dimensional flow 

3. The velocity of the fluid inside the tank is zero 

4. Gravitational potential energy is neglected: 𝑔𝑧 = 0 

5. Shear or shaft work for the control volume is neglected: 𝑊̇ = 0 

6. Fluid is thermally and calorically perfect: 𝑃 = 𝜌𝑅𝑇,  𝐶𝑣 and 𝐶𝑝 constant 

7. Adiabatic flow: no heat transfer as it is a rapid discharge, 𝑄̇ = 0 

8. Rigid tank 

 

Dimensionless variables 

 

Defining dimensionless variables:  
 

𝑃∗ =
𝑃

𝑃𝑖
;           𝑃𝑓

∗ =
𝑃𝑓

𝑃𝑖
;           𝜌∗ =

𝜌

𝜌𝑖
;           𝑇∗ =

𝑇

𝑇𝑖
 

𝑚∗ =
𝑚̇√𝑅𝑇0

𝑃0𝐴
;       𝑡∗ =

𝑡

𝑡𝑐ℎ𝑎𝑟
;       𝑡𝑐ℎ𝑎𝑟 =

𝑉

𝑃𝐴
;        𝐶𝑐  =

𝐴

𝐴0
 

 

Mathematical procedure 

 To describe a flow we need the governing equations, but in this case only two 

are necessary: the continuity and energy conservation equations. Once these equations 
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(1) 

 

 

 

 

 

 

are found, it is possible to study the thermodynamic relationships of the fluid to know 

how the fluid inside the tank expands as it is being drained. 

Continuity equation 

𝜕

𝜕𝑡
∫ 𝜌 𝑑𝑉

𝑉

+ ∫ 𝜌𝑉 · 𝑑𝑆
𝑆

= 0 

 Under the quasi-steady flow assumption (assumption number 1), the density is 

uniform throughout the control volume and can be pulled out of the integral. Then, as it 

is a rigid tank (assumption number 8), it is possible to take the volume out from the time 

derivative, leaving the density which is a function of time. Knowing the definition of 

mass flow rate, 𝑚̇ = 𝜌𝑉𝐴, the continuity equation becomes: 

𝑑𝜌

𝑑𝑡
+

𝑚̇

𝑉
= 0 

Energy equation 

𝑄̇ − 𝑊̇ =
𝜕

𝜕𝑡
∫ 𝑒𝜌 𝑑𝑉

𝑉

+ ∫ (𝑒 + 𝑝𝑣)𝜌𝑉 · 𝑑𝑆
𝑆

 

 The first and the second term become 0 because of assumptions 7 and 5 

respectively. Defining the internal energy as 𝑒 = 𝑢 +
𝑣2

2
+ 𝑔𝑧, substituting it in the third 

and fourth terms, and simplifying while making assumptions 2 and 4, an expression of 

continuity depending on the enthalpy is developed. Resolving the integrals it is possible 

to obtain a final equation: 

𝑑

𝑑𝑡
(𝜌𝑢) +

𝑚̇

𝑉
𝐻 = 0 

Thermodynamic relation 

 Combining the equations of continuity and energy in order to remove the mass 

flow rate and the volume as variables, another equation is obtained. Invoking 

assumption 7 for an adiabatic flow, the stagnation enthalpy (H) is the enthalpy of the 

fluid in the tank (h). 

𝑑

𝑑𝑡
(𝜌𝑢) −

𝑑𝜌

𝑑𝑡
ℎ = 0 

 Following this simplification, assumption 6 implies some definitions that are 

helpful, such as the specific heat ratio (𝛾) for these type of flows. 

𝑢 = 𝐶𝑣𝑇                    ℎ = 𝐶𝑝𝑇                    𝛾 =
𝐶𝑝

𝐶𝑣
 

 Substituting these definitions in the equation (5), continuing with the 

development of it, and introducing the dimensionless variables result in the isentropic 

relations. That means that when the tank is draining the fluid expands isentropically and 

the temperature and density can be expressed as a function of pressure as it follows. 

𝑇∗ = (𝑃∗)
(𝛾−1)

𝛾  

𝜌∗ = (𝑃∗)
1
𝛾 

(2) 

 

 

 

(3) 

 

 

 

 

(4) 

 

 

 

 

(5) 

 

 

 

 

 

 

 

(6) 

 

(7) 



UCCS | Undergraduate Research Journal | 9.2 

 

36 

  

 

Flow equations depending on time 

 Due to the high difference of pressures between inside and outside of the tank, 

the flow will evolve through three different behaviors. These three cases have been 

studied, and their dimensionless time-dependent equations derived. 

Choked flow equations 

 In this case the mass flow rate is expressed by Fliegner’s formula [3] which is 

independent of pressure and dependent on the specific heat ratio of the fluid (𝛾). So, as 

long as the flow is choked the mass flow rate is a constant 𝐾 = 0.6847 (taking 𝛾 = 1.4) 

[4]. 

𝑚∗ = √𝛾 [
𝛾 + 1

2
]

−(𝛾+1)
2(𝛾−1)

 

 By introducing the dimensional form of the mass flow rate to the continuity 

equation (2), non-dimensionalizing all the variables, and defining the characteristic 

time, it is possible to reach a simple expression with all the variables of interest. 

𝑑𝜌∗

𝑑𝑡∗
+

𝐾

√𝛾

𝑃∗

√𝑇∗
= 0 

 When the variables have been substituted using the isentropic relations and the 

equation depends only on time and pressure, it is possible to integrate it and arrive at an 

expression of the pressure depending on the time. Using the isentropic relations again 

results in temperature and density expressions. 

𝑃∗ = [1 + (
𝛾 − 1

2
) (

𝛾 + 1

2
)

−(𝛾+1)
2(𝛾−1)

𝑡∗]

−2𝛾
(𝛾−1)

 

𝜌∗ = (𝑃∗)
1
𝛾 

𝑇∗ = (𝑃∗)
𝛾−1

𝛾  

 

Unchoked compressible flow equation 

For determining when the flow becomes unchoked, we used the critical pressure 

ratio condition. 

𝑃𝑓
∗

𝑃∗
= (

2

𝛾 + 1
)

𝛾
𝛾−1

 

 This expression depends solely on the heat specific ratio, so it is a constant for 

each value of 𝛾. When the pressure ratio is greater than that constant, it means that the 

flow is still choked, and when it becomes lower, it means that the flow is unchoked. 

Taking the value = 1.4 , the constant is 0.528. 

 The procedure for finding the equations of the flow is the same as before, but the 

expression for the mass flow rate becomes dependent on the final pressure. Once the 

(7) 

 

 

 

 

 

 

 

 

(8) 
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(10) 

 

 

(11) 

(12) 
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expression for mass flow has been introduced into the continuity expression and it has 

been non-dimensionalised, then it is possible to integrate. An initial condition is taken 

as the “unchoked time,” which is the moment when the flow passes from the choked 

condition to the unchoked. Then, as a final condition of the integration, an arbitrary time 

is used. Doing the integration results in an expression of the time as a function of 

pressure.  

𝑚∗ = (
2𝛾

𝛾 − 1
)

1
2

[1 − (
𝑃𝑓

∗

𝑃∗)

𝛾−1
𝛾

]

1
2

(
𝑃𝑓

∗

𝑃∗)

1
𝛾

 

 

𝑡∗ = 𝑡𝑢𝑛𝑐ℎ
∗ + (

2

𝛾 − 1
)

1
2

𝐶𝑐(𝑃𝑓
∗)

−(𝛾−1)
2𝛾 [(

𝑥3

4
+

5

8
𝑥) (𝑥2 + 1)

1
2 +

3

8
ln (𝑥 + (𝑥2 + 1)

1
2)]

𝑥

𝑥𝑢𝑛𝑐ℎ

 

𝑥 = [(
𝑃∗

𝑃𝑓
∗)

𝛾−1
𝛾

− 1]

1
2

 

𝜌∗ = (𝑃∗)
1
𝛾 

𝑇∗ = (𝑃∗)
𝛾−1

𝛾  

 

 In this equation of time-pressure, there is a new parameter called the coefficient 

of contraction, 𝐶𝑐, due to the vena contracta effect. This coefficient appears because the 

discharge of the vessel is through an orifice, and when this happens the flow acts as 

shown in the figure below and contracts itself. The coefficient is the relation between 

the areas of the orifice and the point where the flow is most compressed. The values for 

this parameter are between 0.61-0.64.  

 

 

 

 

 

 

 

Unchoked incompressible flow equations  

 It is considered that when Mach number is 0.3 or less the fluid is incompressible, 

and this is the condition used for determining the change of the regime from 

compressible to incompressible. Knowing the pressures and the specific heat ratio, it is 

possible to calculate the Mach number as follows [5]: 

A A0 

 

𝐶𝑐 =
𝐴

𝐴𝑜
 

 

1. Vena contracta effect 
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𝑀 = [
2

𝛾 − 1
{(

𝑃∗

𝑃𝑓
∗)

𝛾−1
𝛾

− 1}]

1
2

 

 

 When the incompressible condition is reached, it is assumed that there is quasi-

steady flow.  It is also assumed that there is no shaft work as there is no turbine or 

pump. Moreover, as the discharge is through an orifice, the friction losses are also 

neglected. Adding the assumption of inviscid and laminar flow, it is possible to use the 

Bernoulli equation to characterize this flow.  

 The flow coefficient 𝐾𝑓 is a parameter that represents the relation between the 

pressure drops and the mass flow rate. The flow coefficient is the product between the 

coefficient of discharge, 𝐶𝑑, and the velocity approach factor,  
1

√1−𝛽4
. 

 The coefficient of discharge is an experimental non-dimensional number which 

is used for calculating the mass flow rate while a tank discharges to the 

environment. It depends on the shape of the orifice and its area, but for this 

study we’ve used the average number of 0.68.  

 

 The velocity approach factor which relates the velocity at the orifice to the 

velocity at the point of maximum contraction of the flow. In its expression there 

is a new parameter 𝛽 which is a relation between diameters of the two points of 

interest. 

As was said before to find the governing equations of the flow, the Bernoulli equation 

and the continuity equation were used. Introducing the parameters for the loss effect, it 

is possible to achieve the mass flow rate equation. 

𝑚∗ = 𝐾𝑓𝐶𝑐√2(𝑃∗ − 𝑃𝑓
∗) 

 Then from the ideal gas equation 𝑃𝑉 = 𝑚𝑅𝑇 we can develop the time-

dependent equations, just like the other two cases. 

𝑡∗ = 𝑡𝑖𝑛𝑐 −
√2𝛾

𝐶𝑐𝐾𝑓

1

𝑇∗
(√𝑃𝑖𝑛𝑐

∗ − 𝑃𝑓
∗ − √𝑃∗ − 𝑃𝑓

∗) 

𝜌∗ = 𝑐𝑛𝑡 

𝑇∗ = (𝑃∗)
𝛾−1

𝛾  

Results 

Using the math program MATLAB with all the flow equations the following figure was 

created: 

(17) 

 

 

 

 

(18) 
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 Every color represents one of the studied variables (see legend). The cyan color 

represents the variation of the properties during the unchoked compressible regime, so 

where the color changes it signifies a change of a regime. When 𝑡∗ = 6.58 the flow 

changes its condition from the choked regime to the unchoked compressible regime, and 

when 𝑡∗ = 8.069 the flow changes its condition again from the unchoked compressible 

regime to unchoked incompressible regime. 

 Other studies can be carried out with these equations to study the effect of the 

final pressure, what happens when the difference between pressures is small, or to study 

the times of discharge for other types of orifices. As can be seen in the next two graphs, 

these parameters change the discharge process. The graph on the left is using a smaller 

pressure diference so the discharge is faster, less than 4 seconds. The graph on the right 

is using 𝐶𝑐 = 1, which affects the draining time. 

 

Conclusions 

 This paper has developed the mathematical procedure for obtaining the 

equations of flow in each of the three regimes of a high pressure tank being drained. 

The graphs show the feasibility of using compressible and incompressible flow 

calculations to determine a generalized time to drain a tank. Furthermore, from the 
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graphics it can be seen that the main regime condition is choked flow because of the 

difference imposed between the initial and final dimensionless pressures. If the 

difference is smaller, the choked regime condition is reduced because there is not 

enough pressure to maintain that condition. Also it can be seen that the mass flow rate 

has a discontinuity between the compressible and incompressible regimes due to the fast 

discharge of the vessel. When the flow reaches the incompressible condition the tank is 

almost empty.  

The completion of the equations and the graphics are very important in 

understanding how the basis of rocket propulsion works. Because of Newton’s third 

law, the law of action and reaction, when the deposit of the rocket is draining, the fluid 

that is going out will produce thrust. So, knowing the mass flow rate at each moment 

can be used to calculate how much thrust is going to be. Also, the period of time when 

the rocket is going to have maximum thrust can be determined, which is going to be 

during the compressible regime because it is when there is maximum flow rate. 

Furthermore, as the development has been done for a generalized fluid, the equations 

can be applied to any kind of rocket propulsion, such as water, air, or any other fluid. 
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