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Introduction 

An important example of physically interesting nonlinear wave equations was proposed in 1970 

by Kadomtsev and Petviashvili [1] in their study of plasma waves. It is a (2 + 1)-dimensional, weakly 

nonlinear dispersive wave equation of the form: 

 

(4ut + 6uux + uxxx)x + 3uyy = 0, (1) 
 
where u = u(x,y,t) represents the (normalized) wave amplitude. Equation (1) is referred to as the KP 

equation. From a physical perspective, the KP equation has been studied in the context of oblique 

interactions of ion-acoustic and shallow water solitary waves. An example of such wave phenomena 

observed in nature is the surface wave patterns created by the oblique interaction of incoming waves in 

shallow water on long, flat beaches as shown in Figure 1. 

 
 
 
 
 
 
 
 
 

 
Figure 1: Beach wave patterns. Photographs by M. J. Ablowitz and D. E. Baldwin [2] 

 

The KP equation (1) admits an important class of solitary wave solutions that are regular, non-

decaying and localized along distinct lines in the xy-plane. These are known as the line-soliton solutions, 

which have been studied extensively in recent years [3, 4].  

The simplest example of a KP line-soliton is the one-soliton solution, which is a traveling wave: 
  

𝑢(𝑥, 𝑦, 𝑡) =
1

2
(𝑘2 − 𝑘1)

2 sech2
1

2
(𝑘2 − 𝑘1)[𝑥 + (𝑘1 + 𝑘2)𝑦 − 𝑐𝑡 − 𝑥0], (2)

Abstract 

The Kadomtsev-Petviashvili (KP) equation describes the motion of shallow water waves 

on a flat two-dimensional region. It admits a class of solitary wave solutions, called line-

soliton solutions, which are localized along distinct lines in the xy-plane. These types of 

solutions have been studied extensively in recent years. Using a variety of initial 

conditions, the KP equation is simulated numerically, and the interactions of the evolved 

solitary wave patterns are studied. The goal is to determine to which of the many exact 

solutions of the KP equation the initial conditions converge. 
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and is localized along a line 𝐿12 ∶ 𝑥 + (𝑘1 + 𝑘2)𝑦 − 𝑐𝑡 − 𝑥0 = 0 in the xy-plane for fixed t, as shown in 

Figure 2. The one-soliton is characterized by two real, distinct parameters 𝑘1 < 𝑘2 which determine the 

soliton amplitude: 
1

2
(k2-k1)

2, soliton speed: c = k1
2+k1k2+k2

2, and the soliton direction k1+k2 = tan(), 

where  is the angle, measured counterclockwise between the line L and the positive y-axis. We usually 

denote a one-soliton solution as the [1, 2]-soliton because of its dependence on the parameters k1, k2. The 

general line-soliton solutions of KP can be constructed in a simple algebraic way as 

 

𝑢(𝑥, 𝑦, 𝑡) = 2(ln)𝑥𝑥 , (3) 

 

where the -function is a linear combination of exponential functions where the exponents are linear in 

x,y,t. 

 
Figure 2. One-soliton solution of KP 

 
Furthermore, the coefficients in the linear combinations are positive, which ensures that the 

solutions obtained via (3) are globally regular. For example the -function for the one-soliton solution is 

given by(𝑥, 𝑦, 𝑡) = 𝐸(1) + 𝐸(2) where 𝐸(𝑖) = exp⁡(𝑘𝑖𝑥 + 𝑘𝑖
2𝑦 + 𝑘𝑖

3𝑡 + 𝑖), 𝑖 = 1,2 where the 𝑘𝑖, 𝑖  
are constants. Note from Figure 2 that the one-soliton solution is exponentially small in regions of the 

xy-plane where the exponentials 𝐸(1) and 𝐸(2) are dominant, but is localized along the line 𝐿12 where 

𝐸(1), 𝐸(2) are of the same order. 

In this project, we numerically investigate the interaction properties of the line-soliton solutions 

corresponding to a variety of initial conditions. We study the convergence of initial data to the exact 

solutions, and the relation between the parameters defining the initial conditions and those of the exact 

solution. We consider types of initial waves relevant to physical problems and experiments. Since (1) 

admits a large number of exact solutions, an important problem is to predict to which exact solution of 

KP a given initial condition, which resembles a physical interaction of two localized waves, converges. 

There exist some theoretical conjectures to predict which initial condition would evolve to a given exact 

solution, but it needs to be supported by the numerical results of this project, which is expected to yield 

further insight into developing an exact analytical theory. 

Numerical Scheme 
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We are currently developing MATLAB codes to run these numerical simulations, which involve 

solving the KP equation (1) numerically with given initial data. The efficiency of the codes is being 

tested using various types of initial data and carefully estimating the error between the exact and 

numerical solutions of the KP equation. The error is then minimized by optimizing the parameters of the 

exact solution. 

We solve the KP equation numerically using a pseudo-spectral scheme on a rectangular domain 

𝐷 = {(𝑥, 𝑦): |𝑥| ≤ 𝐿𝑥/2, |𝑦| ≤ 𝐿𝑦/2}. We assume that the solution is periodic in both x and y. 

Then it is convenient to rescale the D to a fixed domain 𝐷′ = {(𝑋, 𝑌) ∶ |𝑋| ≤ 𝜋, |𝑌| ≤ 𝜋}⁡by 

defining 𝑋 = (2𝜋/𝐿𝑥)𝑥, 𝑌 = (2𝜋/𝐿𝑦)𝑦  so that (1) becomes: 

(𝑢𝑡 + 𝑃𝑢𝑢𝑋 + 𝑄𝑢3𝑋)𝑋 + 𝑅𝑢𝑌𝑌 = 0, 𝑃 =
3

𝐿𝑥
, 𝑄 =

23

𝐿𝑥
3 , 𝑅 =

6𝜋𝐿𝑥

4𝐿𝑦
2 . (4) 

 
Due to periodicity, we can express the solution as: 

  

𝑢(𝑋, 𝑌, 𝑡) = ∑ ∑ 𝑢̂(𝑙,𝑚, 𝑡)𝑒𝑖(𝑙𝑋+𝑚𝑌),

∞

𝑚=−∞



𝑙=−

 

 

and reduce (4) into an ODE for the time evolution of the Fourier coefficients 𝑢̂(𝑙,𝑚, 𝑡), namely, 

 

𝑢̂𝑡 +
𝑖𝑙𝑃

2
N (𝑢̂) + 𝑖 (

𝑅𝑚2

𝑙
−𝑄𝑙3) 𝑢̂ = 0,⁡⁡⁡⁡⁡𝑙 ≠ 0, (5) 

where N(𝑢̂) is the Fourier transform of u2 which is numerically evaluated as N (𝑢̂) =

𝐹𝐹𝑇 ((𝐼𝐹𝐹𝑇(𝑢̂))
2
). The ODE (5) can be expressed as:  

𝑣𝑡 + 𝛼𝑒𝑐𝑡N(𝑣𝑒−𝑐𝑡) = 0, 

 

where 𝑐 = 𝑖(𝑅𝑚2/𝑙 − 𝑄𝑙3), 𝑣 = 𝑢̂𝑒𝑐𝑡, 𝛼 = 𝑖𝑙𝑃/2, and numerically solved using the Runge-Kutta of 

order 4 (RK4) method for a given initial data 𝑢̂(𝑙,𝑚, 0) obtained from the Fourier Transform of 

𝑢(𝑋, 𝑌, 0). The solution 𝑢(𝑋, 𝑌, 𝑡) (hence 𝑢(𝑥, 𝑦, 𝑡)) is then reconstructed by taking the inverse Fourier 

Transform of 𝑢̂(𝑙,𝑚, 𝑡) for 𝑙 ≠ 0. 

 

Remarks 

 When l = 0, the ODE in (5) reduces to 𝑢̂(0,𝑚, 𝑡) = 0 for all values of m and t. This is called 

the zero-mode condition which is also equivalent to the mean-free condition: ∫ 𝑢𝑑𝑋 = 0,
𝜋

−𝜋
 and 

must be satisfied for all periodic solutions. Our initial data (in the form of line-solitons) do not 

satisfy the mean-free condition, so we force the zero-modes 𝑢̂(0,𝑚, 𝑡) to be zero in our 

numerical code. However, our numerical experiments suggest that the overall error due to the 

violation of this condition remains small. 

 

 The pseudo-spectral scheme works well for vanishing boundary conditions in both x and y 

directions. However, the initial data used in our numerical simulations do not vanish at the 

boundaries of the numerical domain D. As a result, in our numerical simulations, the amplitude 

of the wave near the boundary diminishes, and the crest of the incident solitary wave is bent 
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backward. To address this issue, we use a method developed by Tanaka [5] (see also [6]) to 

artificially modify the data near the boundary to maintain constant amplitude and the original 

shape. For the kind of initial data used in our numerical simulations, we modify the numerical 

solution by imposing zero boundary conditions in the x-direction, and by “patching” with the 

exact one-soliton solutions in the y-direction, near the boundary. Figure 3 below shows an 

example of a V-shape initial condition with the indicated patching region at the boundary. 

 
 

 

 

 
Figure 3. A V-shape initial condition with patching 

 

 

Simulations and Results 

In this section we present numerical simulations which show the evolution of various types of 

solitary wave initial data to the exact solution of the KP equation. A typical initial condition is formed 

by gluing together pieces of [i, j] one-soliton solutions of the form: 
 

𝑢(𝑥, 𝑦, 0) =
1

2
(𝑘𝑗 − 𝑘𝑖)

2
sech2

1

2
(𝑘𝑗 − 𝑘𝑖)[𝑥 + (𝑘𝑖 + 𝑘𝑗)𝑦 − 𝑥0],         (6) 

 
for different values of the parameters ki, kj. In this context, gluing means using half of one soliton and 

half of another soliton with different ki and kj values and joining the two ends together.  
 

Y-soliton 

The Y-soliton represents a resonant interaction of 3 one-soliton solutions. In our numerical 

experiments, we take the initial data consisting of a [1, 3] and [1, 2] soliton glued together as shown in 

the left frame of Figure 4. The k-parameters are chosen to be {k1, k2, k3}={-1, 0, 1}. The middle frame (t 

= 10.05) of Figure 4 shows the formation of the [2, 3] soliton as well as dispersive waves created due to 

the interaction of the initial waves at the intersection point (junction of the Y-shape). The Y-soliton 

moves faster and eventually separates from the dispersive waves as shown in the right panel (t = 21) of 

Figure 4. 

 

Figure 4: Numerical simulation of a Y-soliton 

 
 

Next we demonstrate numerically that the initial waves converge to the exact solution. By 

convergence we mean that the numerical solution in the interaction region generates a pattern due to the 
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resonant interaction, and this pattern can then be identified with an exact solution of KP. The 

convergence is only in a local sense; we use the following (relative) error estimate, 

𝐸(𝑡) = [
∬ |𝑢𝑛𝑢𝑚(𝑥, 𝑦, 𝑡) − 𝑢𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑦, 𝑡)|

2𝑑𝑥𝑑𝑦
5

𝐵

∬ 𝑢𝑒𝑥𝑎𝑐𝑡
2 (𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦

5

𝐵

]

1
2

, 

 

(7) 

where the L2 norms are computed over a rectangular box B (shown in Figure 4) around the interaction 

region. The exact Y-soliton solution is given by (3) where the τ-function is given by 

 
 

𝜏 = (𝑘2 − 𝑘1)𝑒
𝜃1+𝜃2 + 𝑎(𝑘3 − 𝑘1)𝑒

𝜃1+𝜃3 + 𝑏(𝑘3 − 𝑘2)𝑒
𝜃2+𝜃3 , 𝑎, 𝑏 > 0,                  (8) 

 
 

with 𝜃𝑖 = (𝑥, 𝑦, 𝑡) = 𝑘𝑖𝑥 + 𝑘𝑖
2𝑦 − 𝑘𝑖

3𝑡, 𝑖 = 1,2,3. We take the same k-parameters for the numerical and 

exact solution, and optimize the parameters a, b so that the error in (6) is minimum at a given value of t 

and decreases for later times. This process identifies an exact solution (with the optimized parameters) 

that is closest to the numerical solution. Figure 5 shows the convergence of the numerical solution to an 

exact Y-soliton with optimized value of the parameters {a, b} = {0.605, 1.22} 

 

 

 

 

 

 

 

 

 

 

 Figure 5. E(t) vs t. Optimized at t=16 

 

<- shape initial data 

In this example we demonstrate the evolution of a <-shape initial data.  The left frame in Figure 

6 shows a <-shape initial condition formed by gluing together two one-soliton solutions with k-

parameters {k1, k2, k3, k4} = {-0.9, -0.1, 0.1, 0.9}. The top and bottom solitons of the <-shape are [1, 3] 

and [2, 4] solitons, respectively. The middle and right frames show the time-evolution of the initial 

condition at t = 10 and t = 30, respectively. The initial data converges to a 2-soliton solution of KP 

called the (3142)-soliton (see e.g. [3]), which consists of [1, 3] and [3, 4] solitons for y > 0, [1, 2] and [2, 

4] solitons for y < 0, and an intermediate [1, 4] soliton in the form of a vertical stem. Note that the 

dispersive waves created near the intersection point of the <-shape gradually separates from the solitary 

wave pattern as the (3142) soliton is formed. 
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Figure 6. Evolution of a <-shape initial wave 

 

The τ-function for the exact (3142)-soliton depends on ki and 3 other positive parameters a, b, c. 

It is given by 

∑ 𝐴[𝑖𝑗](𝑘𝑗 − 𝑘𝑖)𝑒
𝜃𝑖+𝜃𝑗 ,

1≤𝑖<𝑗≤4

 

 

 

(8) 

 
with 𝜃𝑖 = 𝑘𝑖𝑥 + 𝑘𝑖

2𝑦 − 𝑘𝑖
3𝑡, 𝑖 = 1,… ,4,⁡and where A[12] = 0, A[13] = 1, A[14] = b, A[23] = a, A[34] = 

c, A[24] = ab. Like the Y-soliton case, here we choose the same values for the k-parameters which 

defined the initial <-shape waveform, and optimize the parameters a, b, c so that the error defined by 

equation (6) is minimized. For this experiment, the optimal parameter values determining the exact 

(3142)-solution were computed at t = 20, and are given by {a, b, c} = {2.07, 0.23, 0.6}. The strictly 

monotonic decrease of E(t) shown below in Figure 7 indicates that the numerical solution is converging 

to the exact (3142)-solution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. E(t) vs t. Optimized at t=20. 

 

Stem of the (3142)-soliton: The stem soliton is formed by the resonant interactions of the [1, 3] and [3, 

4] solitons for y > 0, and the [1, 2] and [2, 4] solitons for y < 0. It is the middle (high intensity) region 
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shown in the right frame of Figure 6. According to KP theory, the stem is a [1, 4] soliton which depends 

on the parameters k1 and k4. From (2) the amplitude and velocity of the stem are: 
1

2
(k4-k1)

2 and k1
2 + k4

2 + 

k1k4, respectively. We estimate both amplitude and velocity of the stem from the numerical solution and 

compare them with the theoretical values. The left frame in Figure 8 is a plot of the stem amplitude 

measured at y = 0 with time. As the stem develops, its amplitude grows and gets closer asymptotically 

(from below) to the theoretical value: 
1

2
(k4-k1)

2 = 1.62 shown by the solid line in the graph. The growth 

rate of the amplitude is slow, and the numerically estimated value stays well below the asymptotic value 

even for much larger run times. The right frame of Figure 8 shows the location of the point on the stem 

at y = 0 as it evolves in time. The graph is linear whose slope yields a numerical estimate of the stem 

speed. For this simulation, the numerically estimated stem speed = 0.812, which is in agreement with the 

theoretical value of k1
2 + k1k4 + k4

2 = 0.81. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Stem amplitude & position for <-shape initial data 

 

 

 

 

 

 

 

 

 

 

Figure 9. Growth of stem length for <-shape initial data 

 

It should be clear from Figure 6 that the stem evolves to an intermediate soliton whose length 

increases with time. The theoretical estimate of the stem length is given by L(t) = 2k3t + L0 where L0 is a 

constant that depends on the parameters a, b, c and the ki. We compare the stem length of the numerical 
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solution with the theoretical estimate in Figure 9. After adjusting for the soliton width, the theoretical 

(slope = 2k3 = 0.2) is a little higher than the best fit line (slope=0.2) for the numerical data. But both 

lines have almost the same slope. 

 

Bow-shape initial data 

Here we consider an initial condition obtained by adding a small vertical stem to the <-shape as 

shown in the left frame of Figure 10. We call it the bow-shape initial data. The goal here is to study the 

evolution of the initial stem in more detail. Given a set of k-parameters {k1, k2, k3, k4}, we find that there 

are two distinct cases corresponding to whether the stem grows or shrinks. These are described below. 

Case 1: Here we choose the bow-shape initial data that is symmetric about the y-axis, and 

consists of a [1, 2] soliton for y > 0, a [3, 4] soliton for y < 0 and a [1, 4] soliton as the initial stem. The 

initial data and its time evolution at t = 10 and t = 31 are shown in Figure 10 below.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Evolution of a bow-shape initial wave. Initial stem length is 4 units 

 
We observe that the stem in the initial bow shape shrinks with time by shedding energy in the form of 

dispersive radiation which separates from the solitary waves. The resulting wave pattern from the initial 

data evolves to an O-type exact solution of KP. The O-type is an X-shape 2-soliton solution with [1, 2] 

and [3, 4] solitons for both y > 0 and y < 0 interacting in the middle. We confirm our observation by 

comparing the numerical solution with an exact O-type solution with optimal parameter values which 

minimize the error in (6) as discussed earlier. The τ-function for the O-type soliton is given by 

 

𝜏 = (𝑘3 − 𝑘1)𝑒
𝜃1+𝜃3 + 𝑎(𝑘3 − 𝑘2)𝑒

𝜃2+𝜃3 + 𝑏(𝑘4 − 𝑘1)𝑒
𝜃1+𝜃4 + 𝑎𝑏(𝑘4 − 𝑘2)𝑒

𝜃2+𝜃4 ,                       (9) 

 

with 𝜃𝑖(𝑥, 𝑦, 𝑡) = 𝑘𝑖𝑥 + 𝑘𝑖
2𝑦 − 𝑘𝑖

3𝑡, 𝑖 = 1, … ,4. We take the k-parameters to be {k1, k2, k3, k4} = 

{-1.1, -0.1, 0.1, 1.1} for this simulation, the optimal values of the parameters for the exact 

solution are {a, b} = {18.3, 1.66}. The error plot on the top left frame of Figure 11 shows 

convergence of this bow-shape initial data to the exact O-type soliton. The top right frame in 

Figure 11 shows the evolution of the peak amplitude at the interaction region (of the X-shape) 

for the O-type soliton. As the stem shrinks, the peak amplitude decreases and converges to the 

theoretically predicted value for the exact O-type soliton. The bottom panel of Figure 11 shows 

an exact O-type soliton highlighting the maximum of the interaction peak. 
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Figure 11. Convergence of a bow-shape initial data to a O-type soliton 

 

The theoretical estimate of the peak amplitude for the O-type soliton was derived in [3], and is given by, 

 

𝑢𝑚𝑎𝑥 = 𝐴1 + 𝐴2 + 2√𝐴1𝐴2 (
1 − √Δ

1 + √Δ
) , Δ =

(𝑘3 − 𝑘2)(𝑘4 − 𝑘1)

(𝑘4 − 𝑘2)(𝑘3 − 𝑘1)
, 

 

(10) 

 

where A1 = : 
1

2
(k2-k1)

2, A2 = : 
1

2
(k4-k3)

2 are the amplitudes of the [1, 2] and [3, 4] solitons, respectively. 

Using our k-values we obtain umax = 1.288 which is what our numerically estimated value approaches to 

with t. 
 

Case 2: Next we consider a bow-shape initial data which consists of a [1, 3] soliton for y > 0, a [3, 

4] soliton for y < 0 and a [1, 4] soliton as the initial stem with the same set {k1, k2, k3, k4} = {-1.1, -0.1, 0.1, 

1.1} as in Case 1. The difference between this bow-shape initial data and that of Case 1 is that the 

amplitudes of the solitons in y > 0 and y < 0 are higher in this case. The initial data and its time evolution at 

t = 10 and t = 35 are shown above in Figure 12. In this case, the stem of the bow-shape grows, and the 

initial wave form converges to a (3142)-soliton after separating from the dispersive waves. The error 

between the numerical and the optimal exact (3142)-solution (see previous subsection) with parameters {a, 

b, c} = {2.21, 1.38, 0.2} is plotted in Figure 13 below. The error decreases significantly with time, showing 

convergence to the (3142)-soliton solution, although the error curve is not strictly monotonic as in the 

previous cases. This is primarily due to the fact that the stem sheds dispersive waves as it grows. 
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Figure 12. Evolution of a bow-shape initial wave. Initial stem length is 4 units 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13. Left: E(t) vs t. Optimized at t = 29 

 

Behavior of the stem: In our simulations, we observe that as the stem grows, its shape and amplitude 

fluctuates considerably due to interaction with dispersive waves. This behavior contrasts the smooth 

evolution of the stem for the (3142)-soliton corresponding to the <-shape initial data discussed earlier. 

Hence, instead of computing the stem amplitude only at y = 0 (as in the previous case), here we 

compute the average amplitude over a region around the center (y = 0) of the stem, and compare with 

the theoretical value. Figure 14 shows our results. The left frame is a plot of the average stem amplitude 

with time, and shows that the stem amplitude grows asymptotically, and gets much closer to the 

theoretical value than in the case of the <-shape initial data (cf. Figure 8). The average stem amplitude 

at t = 40 is 2.4 while the theoretical value is 2.42. The middle frame shows the evolution of the center of 

the stem at y = 0. The slope of this curve matches almost exactly with the theoretical value of the stem 

velocity k1
2 + k1k4 + k4

2 = 1.21. The right panel shows the plot of the numerically estimated stem length 

versus time. This growth is almost linear as predicted by KP theory; the slope of the theoretical line is 

2k3 = 0.2, while the slope of the best fit line through the numerical data is 0.205. However, the 

numerically estimated values for the actual stem length seem to be larger than the theoretical values for 

all t. We believe that this discrepancy (see also Figure 9) is mainly due to the method used to 

numerically estimate the stem length. We are trying to improve our current method. 
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Figure 14. Stem growth for a bow-shape initial data 

 

Conclusion 

In our simulations, we numerically investigated the initial value problem of the KP 

equation. In the case of the Y-junction, we saw that the initial condition converged to the exact 

Y-junction solution of KP. In the error plot, the error is high at first since our initial condition is 

not an exact solution. As time progresses, the error decreases indicating that the initial condition 

is in fact converging to the Y-junction solution. We also studied the <-shape initial condition. 

The stem forms and continues to grow over time. This behavior is typical for the (3142) case. 

Two bow-shape initial conditions have also been investigated. In one case, the stem increases 

and converges to (3142). In the other case, the stem decreases to a point and converges to the O-

type solution. To be sure of the convergence of a particular initial condition, further analysis was 

done. For the (3142) bow-shape initial condition, we looked at the stem growth rate of the 

numerical simulation and compared it to the growth rate of the exact solution. The rates nearly 

matched which provides more confidence in the convergence of the (3142)-solution. Likewise, 

for the O-type solution, the peak amplitude obtained from the numerical data converged to the 

theoretical value for the exact O-type solution. Our study confirmed for the evaluated cases that 

the initial condition converged to a soliton solution of the KP equation. 
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